Hello There, Guest! RegisterLogin with Facebook
Login with Facebook

New Anna University Nov / Dec 2016 Examination Important Questions
New Anna University (UG / PG) Nov/Dec 2016 and Jan 2017 Theory , Practical Exam Timetable
>>> Anna University Sixth Semester Question Bank Collection (R2013) ECE,MECH,CSE,IT,EEE,CIVIL,EIE
>>> Anna University November/December 2015 Examination Question Papers
>>> Anna University Study Materials for all Departments
>>> Anna University Question Papers : April May June 2015 Question Papers | Nov Dec 2014 and Jan 2015 Question Papers

Register or Login to Submit Study Materials , Shoutbox and also to access Many Features !!

Vidyarthiplus Shop :: Handwritten Premium Lecture Notes
Share your Study Materials with us
Share your Study Materials with us : Click Here

Advanced Mathematical Methods (MA7154) Scanned Lecture Notes - Evangeline Edition
#1


   
AFFILIATED INSTITUTIONS
ANNA UNIVERSITY :: CHENNAI 600 025
REGULATIONS - 2013
M.E. STRUCTURAL ENGINEERING
First Semester
MA7154 Advanced Mathematical Methods
Scanned Lecture Notes (All Units) - Evangeline Edition

Advanced Mathematical Methods Scanned Premium Lecture Notes from Reputed Institutions and Faculties, Contains All Units. Syllabus is Based on Anna University , Post Graduate M.E. Structural Engineering R2013 Regulations.

Arrow Attachment : Click Here

Syllabus :
ADVANCED MATHEMATICAL METHODS

UNIT-1
LAPLACE TRANSFORNS TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATION (1-48)
UNIT-2
FOURIER TRANSFORMS (49-78)
UNIT-3
CALCULUS OF VARIATION (79-120)
UNIT-4
CONFORMAL MAPPING AND ITS APPLICATION (121-148)
UNIT-5
TENSOR ANALYSIS (149-174)


Content :
UNIT-1

LAPLACE TRANSFORMS TECNIQUES FOR PARTIAL DIFFERENTIAL EQUATION
Laplace transform
First shifting theorem
Change of scale property
Initial value theorem
Final value theorem
Error function
Transform of Bessel function
Unit step function or heavi side function
Inverse laplace transform
Complex inversion formula or mellin fourier integral
Convolution theorem or faltung theorem
Solving O.D.E using laplace transform
Wave equation
One dimensional heat equation
Two dimensional heat equation

UNIT-2

FOURIER TRANSFORM
Fourier integral transform
Inversion fourier transform
Parseval’s identity
Bernoulli’s integral
Differentiation of fourier sine and cosine
Convolution theorem

UNIT-3

CALCULUS OF VARIATION
Functional
Euller’s equation
Other forms of euler’s equation
Test for the extremal of a function
Variational problems for functionals dependent on two function
Geodesic
Functions depends on higher order derivation
Variational problems with moving boundaries
Constrains in the form of functional (isoperimetric problems)
Rayleigh – ritz method

UNIT-4

CONFORMAL MAPPING AND ITS APPLICATION
Bilinear transformation
Fixed points or inverient points
Cross-ratio
Confirmal mapping
Transformation
1. Translation
2. Magnification
3. Magnification and rotation
4. Magnification ,rotation and translation
5. Inversion and reflection
SCHWARTZ-CHRISTOFFEL TRANSFORMATION
Application of conformal mapping
Dirichelt’s and Neumann problems
Dirichlet’s problems for half plane
Properties of analytical function
Brachestrone problems , revolution statement

UNIT-5

TENSOR ANALYSIS
Properties of tensor analysis
Contravariant tensor (vector)
Second order tensor
Addition of two tensor
Contraction of tensor
Quotient law
Symmentric and skew-symmetric tensor
Metric tensor
Conjugate or reciprocal tensor
Associative tensor
Christoffel symbol
Derivation of fundamental tensor
Transformation of christoffel symbol
Covariant derivative of a covariant vector
Curl of a covariant vector
Covariant derivative of a contravariant vector
Divergence of a contravarient vector

Arrow Attachment : Click Here

New Share your Study Materials with us : Click Here


Reply
#2

i am ready for purchase I semester ME structural engg all sub notes. but through online display bank interface is no correct.



Reply

Subscribe


Recommend on Google